Copied to
clipboard

G = C52⋊Dic3order 300 = 22·3·52

The semidirect product of C52 and Dic3 acting faithfully

non-abelian, soluble, monomial, A-group

Aliases: C52⋊Dic3, C5⋊D5.S3, C52⋊C31C4, C52⋊C6.2C2, SmallGroup(300,23)

Series: Derived Chief Lower central Upper central

C1C52C52⋊C3 — C52⋊Dic3
C1C52C52⋊C3C52⋊C6 — C52⋊Dic3
C52⋊C3 — C52⋊Dic3
C1

Generators and relations for C52⋊Dic3
 G = < a,b,c,d | a5=b5=c6=1, d2=c3, ab=ba, cac-1=a-1b2, dad-1=a2b, cbc-1=ab2, dbd-1=b3, dcd-1=c-1 >

25C2
25C3
3C5
3C5
75C4
25C6
15D5
15D5
25Dic3
15F5
15F5
3C52⋊C4

Character table of C52⋊Dic3

 class 1234A4B5A5B6
 size 125507575121250
ρ111111111    trivial
ρ2111-1-1111    linear of order 2
ρ31-11i-i11-1    linear of order 4
ρ41-11-ii11-1    linear of order 4
ρ522-10022-1    orthogonal lifted from S3
ρ62-2-100221    symplectic lifted from Dic3, Schur index 2
ρ71200002-30    orthogonal faithful
ρ8120000-320    orthogonal faithful

Permutation representations of C52⋊Dic3
On 15 points - transitive group 15T17
Generators in S15
(1 8 13 10 5)(2 9 14 11 6)
(1 8 13 10 5)(2 11 9 6 14)(3 15 7 4 12)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)
(2 3)(4 11 7 14)(5 10 8 13)(6 15 9 12)

G:=sub<Sym(15)| (1,8,13,10,5)(2,9,14,11,6), (1,8,13,10,5)(2,11,9,6,14)(3,15,7,4,12), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15), (2,3)(4,11,7,14)(5,10,8,13)(6,15,9,12)>;

G:=Group( (1,8,13,10,5)(2,9,14,11,6), (1,8,13,10,5)(2,11,9,6,14)(3,15,7,4,12), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15), (2,3)(4,11,7,14)(5,10,8,13)(6,15,9,12) );

G=PermutationGroup([[(1,8,13,10,5),(2,9,14,11,6)], [(1,8,13,10,5),(2,11,9,6,14),(3,15,7,4,12)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15)], [(2,3),(4,11,7,14),(5,10,8,13),(6,15,9,12)]])

G:=TransitiveGroup(15,17);

On 25 points: primitive - transitive group 25T28
Generators in S25
(1 21 13 10 24)(2 6 9 16 8)(3 5 11 19 12)(4 17 23 22 15)(7 18 25 20 14)
(1 2 14 17 5)(3 24 8 20 4)(6 7 23 11 21)(9 18 22 19 13)(10 16 25 15 12)
(2 3 4 5 6 7)(8 9 10 11 12 13)(14 15 16 17 18 19)(20 21 22 23 24 25)
(2 14 5 17)(3 19 6 16)(4 18 7 15)(8 22 11 25)(9 21 12 24)(10 20 13 23)

G:=sub<Sym(25)| (1,21,13,10,24)(2,6,9,16,8)(3,5,11,19,12)(4,17,23,22,15)(7,18,25,20,14), (1,2,14,17,5)(3,24,8,20,4)(6,7,23,11,21)(9,18,22,19,13)(10,16,25,15,12), (2,3,4,5,6,7)(8,9,10,11,12,13)(14,15,16,17,18,19)(20,21,22,23,24,25), (2,14,5,17)(3,19,6,16)(4,18,7,15)(8,22,11,25)(9,21,12,24)(10,20,13,23)>;

G:=Group( (1,21,13,10,24)(2,6,9,16,8)(3,5,11,19,12)(4,17,23,22,15)(7,18,25,20,14), (1,2,14,17,5)(3,24,8,20,4)(6,7,23,11,21)(9,18,22,19,13)(10,16,25,15,12), (2,3,4,5,6,7)(8,9,10,11,12,13)(14,15,16,17,18,19)(20,21,22,23,24,25), (2,14,5,17)(3,19,6,16)(4,18,7,15)(8,22,11,25)(9,21,12,24)(10,20,13,23) );

G=PermutationGroup([[(1,21,13,10,24),(2,6,9,16,8),(3,5,11,19,12),(4,17,23,22,15),(7,18,25,20,14)], [(1,2,14,17,5),(3,24,8,20,4),(6,7,23,11,21),(9,18,22,19,13),(10,16,25,15,12)], [(2,3,4,5,6,7),(8,9,10,11,12,13),(14,15,16,17,18,19),(20,21,22,23,24,25)], [(2,14,5,17),(3,19,6,16),(4,18,7,15),(8,22,11,25),(9,21,12,24),(10,20,13,23)]])

G:=TransitiveGroup(25,28);

On 30 points - transitive group 30T71
Generators in S30
(2 19 25 28 22)(3 20 26 29 23)(4 11 18 15 8)(6 10 17 14 7)
(1 27 24 21 30)(2 19 25 28 22)(3 29 20 23 26)(4 15 11 8 18)(5 13 9 12 16)(6 10 17 14 7)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 4)(2 6)(3 5)(7 28 10 25)(8 27 11 30)(9 26 12 29)(13 20 16 23)(14 19 17 22)(15 24 18 21)

G:=sub<Sym(30)| (2,19,25,28,22)(3,20,26,29,23)(4,11,18,15,8)(6,10,17,14,7), (1,27,24,21,30)(2,19,25,28,22)(3,29,20,23,26)(4,15,11,8,18)(5,13,9,12,16)(6,10,17,14,7), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,4)(2,6)(3,5)(7,28,10,25)(8,27,11,30)(9,26,12,29)(13,20,16,23)(14,19,17,22)(15,24,18,21)>;

G:=Group( (2,19,25,28,22)(3,20,26,29,23)(4,11,18,15,8)(6,10,17,14,7), (1,27,24,21,30)(2,19,25,28,22)(3,29,20,23,26)(4,15,11,8,18)(5,13,9,12,16)(6,10,17,14,7), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,4)(2,6)(3,5)(7,28,10,25)(8,27,11,30)(9,26,12,29)(13,20,16,23)(14,19,17,22)(15,24,18,21) );

G=PermutationGroup([[(2,19,25,28,22),(3,20,26,29,23),(4,11,18,15,8),(6,10,17,14,7)], [(1,27,24,21,30),(2,19,25,28,22),(3,29,20,23,26),(4,15,11,8,18),(5,13,9,12,16),(6,10,17,14,7)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,4),(2,6),(3,5),(7,28,10,25),(8,27,11,30),(9,26,12,29),(13,20,16,23),(14,19,17,22),(15,24,18,21)]])

G:=TransitiveGroup(30,71);

Polynomial with Galois group C52⋊Dic3 over ℚ
actionf(x)Disc(f)
15T17x15+45x13+630x11+162x10+3625x9+1350x8+9000x7+1800x6+7305x5-1375x3-2250x-450222·322·540·116·134·1272·1949245823572

Matrix representation of C52⋊Dic3 in GL12(ℤ)

010000000000
001000000000
000100000000
-1-1-1-100000000
000000010000
0000-1-1-1-10000
000010000000
000001000000
000000000100
000000000010
000000000001
00000000-1-1-1-1
,
100000000000
010000000000
001000000000
000100000000
000001000000
000000100000
000000010000
0000-1-1-1-10000
00000000-1-1-1-1
000000001000
000000000100
000000000010
,
000010000000
0000-1-1-1-10000
000000010000
000000100000
000000001000
00000000-1-1-1-1
000000000001
000000000010
100000000000
-1-1-1-100000000
000100000000
001000000000
,
100000000000
001000000000
-1-1-1-100000000
010000000000
000000001000
000000000010
00000000-1-1-1-1
000000000100
000010000000
000000100000
0000-1-1-1-10000
000001000000

G:=sub<GL(12,Integers())| [0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0],[0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0],[1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0] >;

C52⋊Dic3 in GAP, Magma, Sage, TeX

C_5^2\rtimes {\rm Dic}_3
% in TeX

G:=Group("C5^2:Dic3");
// GroupNames label

G:=SmallGroup(300,23);
// by ID

G=gap.SmallGroup(300,23);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,5,10,122,5523,488,793,3004,3009,464]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^6=1,d^2=c^3,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^2*b,c*b*c^-1=a*b^2,d*b*d^-1=b^3,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C52⋊Dic3 in TeX
Character table of C52⋊Dic3 in TeX

׿
×
𝔽